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Dispersion of Particles in Periodic Media 
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We discuss the long-time properties of the dispersion of particles in periodic 
media, using the random walk formalism. Exact asymptotic results are obtained 
for the average velocity and the diffusion coefficient, expressed in terms of the 
Green's function of the random walk inside the periodically repeated unit cell. 
We explicitly calculate the transport coefficients for several specific cases of 
interest, including a system with "dead zones," a simple model for field-induced 
trapping, and a one-dimensional map leading to deterministic diffusion. 
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1. I N T R O D U C T I O N  

The transport or dispersion of neutrally buoyant particles in fluids is 
governed by two mechanisms: molecular diffusion and flow convection. 
Diffusion plays an important role in a wide variety of physical and chemi- 
cal processes, such as chemical reactions, mixing of fluids, spreading 
of pollutants, chromatography, and electrophoresis. It is therefore of 
fundamental and practical importance to understand the interaction 
between these two mechanisms, i.e., how does the flow pattern affect the 
dispersion of passive particles, and what is the resulting concentration 
profile of the particles? 

Although the enhancement of dispersion by turbulence is well known, 
the fact that even laminar flow can increase the dispersion is far less well 
known. In 1953 Taylor m showed that the longitudinal dispersion of 
particles suspended in a Poiseuille flow in a cylindrical tube of radius R is 
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described by an effective diffusion coefficient D(D is a measure for the 
width of the concentration profile of the particles) which is given by 

( V ) 2  .g 2 
D = D m + - -  (1) 

48Dm 

where Dm is the molecular diffusion coefficient and ( v )  is the average flow 
velocity. The molecular diffusion coefficient is typically of the order of 
10-5-10 -8 cm2/sec in liquids, and so the contribution of the flow to the 
effective dispersion of particles is by far the dominant effect. 

The study of convection-induced dispersion in a general velocity field 
is very complicated. However, analytic results can be obtained for an 
important subclass of flows, namely the ones with a periodic velocity field. 
Examples are flow profiles arising as a consequence of hydrodynamic 
instabilities, such as the Rayleigh-B6nard system and the circular Couette 
system, or flow profiles in periodic media. (2'~) In these cases, even when 
the mean velocity ( v )  of the flow is zero, the dispersion of the particles 
occurs through the combination of convection along the streamlines and 
molecular diffusion between the streamlines. In particular, for the Rayleigh- 
B6nard instability, Sagues and Horsthemke (4) found (using a perturbative 
method) an effective transport coefficient D equal to 

@2 5 d 2 
D = Dm + (a 2 if- 7c2) Dm (2) 

The convection-induced contribution is again dominant, and has a form 
similar to that encountered in the original Taylor problem [see Eq. (1)]. 

Different approaches to describe such systems have been proposed in 
the literature (see, e.g., refs. 2-9). For the applications that we have in 
mind, we will restrict ourselves to the simple case in which the motion of 
the particles can be described as a Markovian random walk across a 
system consisting of a periodically repeated unit cell (see Fig. 1). In this 
case, it can be shown that the long-time concentration profile converges to 
a Gaussian form, 3 and it suffices to calculate the long-time convection 
velocity and the long-time diffusion coefficient of the particles. We have 
evaluated these quantities using the method of the moments, introduced by 
Aris (11) in the context of Taylor dispersion phenomena, but identical results 
can be obtained in the context of the multistate random walk formalism. (7) 
The unit cell contains a number of states or lattice sites between which the 
particles can jump according to prescribed jump rates. In the applications 
to be discussed here, these sites represent the spatial locations at which the 

3 A proof can be given along lines similar to those of ref. 10. 
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I -1  I I+1 

w i 
Fig. 1. Periodically repeated unit cell consisting of N • M states. 

particles reside, and jumping from one state to another thus constitutes a 
physical displacement of the particle. This is the way in which processes 
mentioned earlier can be modeled, e.g., Taylor dispersion or the dispersion 
of particles in a Rayleigh-B6nard flow. It is, however, also possible that the 
sites represent different physical states of the particle, such as the geometri- 
cal conformation of a molecule or its charge, and these affect the transition 
rates of the random walk that it performs. This description can be used 
to model processes such as chromatography, electrophoresis, NMR, 
molecular rotational dynamics, etc. 

Our main purpose in this paper will be to calculate explicitly the 
asymptotic convection and diffusion coefficients for several applications of 
the above-described model. These include dispersion in spatially periodic 
flows (cf. the discussion given above), the effect of "dead zones, ''(12'13) 
dispersion enhancement in field-induced trapping, ~14 17) a one-dimensional 
chaotic map leading to deterministic diffusion, (18'~9~ and a new general 
result for Taylor dispersion/2~ 

2. EXACT A S Y M P T O T I C  RESULTS 

The periodically repeated unit cell consists of a rectangular array of 
N x M lattice sites or states such as represented in Fig. 1. For simplicity, we 
will assume that the lattice sites inside the unit cell are at a distance 1 of 
each other. The length of the unit cell along the x axis is thus equal to N, 
and the position of a particle is given by x(t)= NI(t), where I(t) is the 
index of the unit cell that is occupied at time t. We have disregarded here 
the spatial variation on the particle's position inside the unit cell since this 
correction is negligible in the long-time limit. As the particles move 
through the system, they jump from one state to another. The jump rate to 
go from a state i to another state i' (not necessarily a nearest neighbor) 
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inside the same unit cell is given by the matrix element Wri, while the 
transitions from state i to state i' in t he  previous or next unit cell are 
denoted by the matrix elements WTi and W~, respectively. The probability 
to find a particle in state i in unit cell I at time t is the solution of the 
following master equation: 

SiP(i, I, t ) = ~  {[W~cP(i', I, t ) -  WriP(i, L t)]  
i' 

+ [WyP(i ' ,  I+ 1, t ) -  Wc~P(i, L t)]  

+ [W~g+P(i ', I -  1, t ) -  WLP(i, I, t )]} (3) 

with the sum over i' running over all the sites in the unit cell. One can 
show that in the long-time limit, the probability profile for the position of 
the particle converges to a Gaussian law (1~ and consequently only the first 
two moments ( x ( t ) ) = N ( I ( t ) )  and (xZ( t ) )=N2(I2( t ) )  are needed to 
characterize this behavior. The equations governing the time evolution of 
these moments can easily be derived from Eq. (3) using the method of 
moments (11) and can be solved by Laplace transformation. To formulate 
the results, it is convenient to introduce the following stochastic matrix T 

= o ) :  

Tu= Wo.+ W + + W~, i # j  

Ti~= Wi~+ Wi + + W~7 - E  (Wj,+ Wj + + WiT) (4) 
J 

and its Green's function 

1 
G(s)  = (5) 

s l  - T  

Since we will be concerned with the long-time properties of the transport, 
we will only need the small-s expansion of the Green's function: 

p~t Glij "~ O(s) ( 6 )  Gu(s)'~~ s 

Note that the stochastic matrix T describes a random walk inside the 
unit cell with periodic boundary conditions, which does not depend on 
the value of the "diagonal" jump frequencies Wi~ and W u . After a 
straightforward calculation, we find the following asymptotic results for the 
drift velocity v and the diffusion coefficient D: 

v = lim (x(t)___~) _ N ~ ~ ( Wz + - Wlm ) P~ (7) 
t ~ o o  t l m 
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D = lim ( x 2 ( t ) ) -  (x(t))2 
t~o~ 2t 

- -E E E E (m/+m m/~n) 1 + st] --  G m n ( W n r  -- mffr ) P~ (8) 
l m n r J 

where the summations run over all the N• M sites of the unit cell. We 
conclude that the average velocity v and the effective diffusion coefficient D 
can be expressed in terms of pst and G1; thus, only the small-s behavior 
of the Green's function of the random walk on the unit cell with periodic 
boundary conditions is needed. In the next section we will apply these 
results to specific cases of interest. 

3. A P P L I C A T I O N S  

3.1. Rota t ing  Fluid Rolls 

As a first example, we consider the transport of particles moving 
through a system of rotating rolls. The unit cell modeling this situation has 
four states (see Fig. 2a) with transition rates k ( 1 - g )  between nearest 
neighbors in the counterclockwise direction and k(1 + g) in the clockwise 
direction. The particles can move through the boundaries to the next or 
previous cells with jump rates k. The matrices T (with periodic boundary 
conditions), W +, and W are given by 

- 3 k  k ( 2 - g )  k ( l + g )  0 ) 
k (2+g)  - 3 k  0 k ( 1 - g )  

T =  k(1 - g) 0 - 3 k  k(2 + g) 

0 k ( l +  g) k ( 2 -  g) - 3 k  

(,o oi) (i ~176 W +  = 0 0 0 0 0 
0 0 0 . W - =  0 0 

~0 0 0 O k  

(9) 

(10) 

The average velocity v equals zero and D [Eq. (8)] reduces to 

D = k ( l +  g2 (11) 
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Fig. 2. Unit  cells for systems with rotating fluid rolls. 
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In an analogous way the result for a unit cell with nine states (see Fig. 2b) 
is obtained as 

2g2(g2 + 11)- ~ (12) 
D = k  l + g 4 + 1 3 g 2 + 1 8 /  

Two variants of the above-described system illustrate the surprising 
modifications introduced by other types of transitions between neighboring 
unit cells. In the first case (Fig. 2c), the particles leave the unit cell only by 
jumping from state 1 to state 2 and vice versa. In this case, the average 
velocity equals zero and one obtains for the diffusion coefficient 

D=k(1 3+  g2"~ 

Whereas in the previous examples [cf. Eq. (11)] the presence of the 
rotating fluid rolls tends to enhance the dispersion, we now find that the 
dispersion is reduced. 

On the other hand, if particles can only jump from state 2 to the same 
state in the neighboring unit cells (Fig. 2d), we recover a result identical to 
that for the "plain" one-dimensional system, i.e., v = 0 and D = k. 

The Rayleigh-B6nard flow pattern is characterized by counterrotating 
fluid rolls. To model this situation, we considered a very simple system in 
which the unit cell contains eight states (see Fig. 2e). The average velocity 
v of the dispersed particles is again zero, while D is given by 

D = k  1 + (14) 

Note that the particles are more effectively dispersed in the case where the 
fluid rolls have the same direction [cf. Eq. (11)] than in the case of 
alternating rolls. 

3.2.  D e a d  P o c k e t s  

The presence of "dead zones" can significantly modify the long-term 
dispersion of the particles. (13'=) To investigate this effect in more detail, we 
will study some representative examples. We start with the unit cell shown 
in Fig. 3a. It has two states between which the particles can switch with 
jump rates kl(1_+gl). One of these states corresponds to the "dead 
pocket," while in the other state the particle can move "freely" along the 
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Systems with "dead pockets." 

horizontal direction. The velocity v and the diffusion coefficient D for this 
example are given by 

v=kg(l + g~) (15) 

and 

D = ~ ( 1  + gl)  1 +~-~j g2(1 - gl)  (16) 

which are to be contrasted with the results 2kg and k, respectively, for a 
biased random walk in the absence of a "dead pocket" (corresponding to 
the case gl = 1). In particular, for gx = 0, we find that the effect of the "dead 
pocket" is to reduce the convection velocity by a factor 2, while the 
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diffusion coefficient is modified by a factor �89 + g2(k/k~)). Consequently, 
dispersion is dramatically enhanced in the limit kl ~ 0. 

In the system represented in Fig. 3b, we have introduced a "dead 
pocket" modeling a trapped vortex. We find that v = 0 and 

k (  2k1(1 + g~) ) (17) 
D=-~ l+k(3+g~)+lOk~(l+g2) 

D is thus restricted to the following interval: 

k k 
~ < D ~ < 2 ~  (18) 

Remarkably, the addition of a reflecting boundary between the states two 
and four (Fig. 3c) completely modifies this result and leads to a diffusion 
coefficient independent of kl and gl : 

k 
D = - (19) 

3 

3.3. Dispersion E n h a n c e m e n t  in F ie ld - Induced Trapping  

Consider a random walk on a line, with transition probabilities to the 
right and to the left equal to k(1 + g) and k ( 1 - g ) ,  respectively. In this 
simple situation, the drift velocity increases monotonically with the 
strength of the bias v = 2kg, while the asymptotic dispersion coefficient 
does not depend on the applied bias, D = k. The situation changes drasti- 
cally in the presence of dead-end branches. An external bias now has a dual 
effect: on the one hand, the bias induces convection in the direction of the 
field, while on the other hand, dead ends that point in the same direction 
as the field are converted into traps. In this case, one observes that the con- 
vection speed v goes through a maximum as a function of the applied bias. 
This phenomenon has been discussed in the context of conduction on the 
percolating cluster and models have been proposed to describe it. (14 17) The 
point that we want to emphasize here is that the dispersion coefficient also 
behaves in a nontrivial way: it also goes through a maximum as a function 
of the applied bias. To illustrate this behavior, we have plotted in Figs. 4a 
and 4b the values of v and D as a function of the bias g, for a periodic, one- 
dimensional system with a dead-end branch of depth 3. The corresponding 
unit cell is represented in Fig. 4c. Note that the maximum for both v and 
D as a function of g becomes more pronounced and shifts to larger values 
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Fig. 4. (a) D/k and (b) v/k as a function of g and for increasing length N of the unit cell 
( N =  1, bottom curves, up to N =  8), and (c) model used to illustrate the effect of field-induced 
trapping. 

of the bias as the densities of traps decreases (or as the length N of the unit 
cell increases). We expect a similar behavior for a random distribution of 
traps. 

3.4. Di f fusion Induced by a Determinist ic  Map  

Diffusion is an ubiquitous example of an irreversible, dissipative pro- 
cess. Numerous attempts have been undertaken to derive it in a rigorous 
way from deterministic, reversible microscopic dynamics. A very attractive 
deterministic model that gives rise to "deterministic diffusion" was intro- 
duced some time ago by Geisel and Nierwetberg. (18) Here we present a few 
simple variants of this model, which, moreover, have the advantage that 
they can be mapped exactly onto a random walk with a periodically 
repeated unit cell. (19) Consider first the piecewise linear one-dimensional 
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map represented in Fig. 5a. Note that particles can "escape" from a unit 
cell I, located at [I, I +  1], to the cells I +  1 and I -  1 through the sections 
A2 and A4, respectively. Furthermore,  the intervals A 1 through A5 provide 
a natural Markovian partition, since the endpoints of these intervals map 
into each other. Finally, it is clear that if the probability density is 
piecewise constant on these intervals at time 0, it will remain so for all 
times. Consequently, for such initial conditions, the dynamic evolution 
induced by the map is equivalent to a Markovian random walk process of 
the type that we have been discussing in this paper, with the important  
difference that time is a discrete variable here. As discussed in detail in 
ref. 23, having a time-discrete rather than a time-continuous random walk 
leaves the drift velocity unchanged but reduces the diffusion coefficient by 
an amount  proportional  to the time step At and the square of the drift 
velocity: 

/)2 

Ddiscrete  time = D c o n t i  . . . . .  time -- -}- At (20) 

For  the above-described map, the time step At is equal to 1 and the unit 
cell is schematically represented in Fig. 5b. The transition matrix reads 

I 
- -  1 + a l  1 a l  0 a I \ 

a2 -- 1 a2 0 a2 

T = a 3 0 - 1 + a 3 0 a 3 

a 4 0 a 4 - -  1 a 4 

as 0 as 1 -- 1 +as/  

(21) 

with 

al +a2 +a3 +a4 +a5= 1 (22) 

The following results are obtained for v and D [cf. Eqs. (7), (8), and (20)]: 

a 2 - -  a 4 
v = (23) 

1 + a 2 + a  4 

D=a2 + 3a2 +4a~a4 + 2a2a4 +4a2a24 + 3a2 +a4 

2(1 + a  2 + a 4 )  3 
(24) 

For  the most symmetrical case with the values of the parameters al ,  a2, a3, 
a 4 ,  and a5 chosen as 

= = 1 ( 2 5 )  al = a 3  a 5 = ¼ and a2 = a 4  g 
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Fig. 5. (a,c) Examples of deterministic maps that give rise to diffusion, (b d) the 
corresponding unit cells, (e) and the results for v and D. 
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one finds that D = 1/10. On the other hand, the Lyapunov exponent of this 
map is equal to 2 = In 4, while the Sinai-Kolmogorov entropy characteriz- 
ing the trajectories that never escape the unit is equal to HsK = In 3. As is 
well known, (24) the probability to leave the unit cell per iteration, which we 
denote by 2k since a particle can move to both the previous and the next 
cell, can be expressed in terms of these quantities as l n ( 1 -  2 k )=  HsK z 2, 
hence k = 1/8. The connection with the resulting transport coefficient D is 
not so clear in the present case. (25) Indeed, the details of the reinjection 
mechanism of a particle into the neighboring cell are needed to determine 
the value of D. In particular, it is found in the present case that D = 1/10 
is not equal to k (which is the result for an unbiased random walk with 
hopping rate k). 

An interesting variant of the above model, displaying a combination of 
convection and diffusion, is represented in Figs. 5c and 5d. Note that this 
model is characterized by the parameter n (n = 1, 2,...) such that the escape 
from the unit cell becomes increasingly difficult as n becomes larger. At the 
same time, the number of states of the Markovian partition increases as 
n + 2. The slope c~ of the map is chosen such that the particles leaving the 
unit cell from state n + 1 are injected uniformly into partition 1 of the next 
unit cell 

e = 2 ( 1  +2e)  (26) 

Additionally, in order for the nth image of partition 1 to map onto the unit 
interval, e must satisfy 

c~"e = 1 (27) 

This fully determines e for every value of n. The results for D and v for 
increasing values of n are shown in Fig. 5e, while the asymptotic for n large 
read 

v . U ~  2 -~ (28) 

D , , ~  2 " (29) 

3.5. Tay lor  Dispersion P h e n o m e n a  

As a last application, we turn to the description of a layered system in 
which the particles perform nearest-neighbor random walks inside each 
layer as well as between the layers (see Fig. 6). The unit cell contains 1 x M 
states, labeled by i = 1 ..... M, with transitions between state i and its nearest 

822/70/5-6-10 
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k; 

m m 

Fig. 6. Unit cell used to describe Taylor dispersion phenomena. 

neighbors i - 1  and i+ 1 occurring at rates k 7 and k +, respectively. We 
assume that the particles cannot leave the system through the upper or the 
lower boundaries; hence the jump rates k~- and k~t are equal to zero. The 
transition matrix W is given by 

- k ;  ~ 

k~ 

t ~ 
w =  . ( 3 0 )  

0 
0 

k~ 0 --- 0 i t 
- ( k ~  + k ; )  k 3 0 . . .  

k + . .  

k M _ l  

. . .  o k2,_2-(kh l+kh_l) k;, 
0 . . .  0 k + _ l  - k ~  

while the matrices W + and W read 

w ;  = aoz + (31) 

w ~  = 6ol  7 (32) 

Using a recursive calculation outlined in ref. 21, we find the following 
analytic result for the long-time behavior of the Green's function: 

1 
p ~ t = ~ k ~ - . . . k  + lki-+l--.k M (33) 
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with 

and 

J V = k 2 . . . k ~ t + k ~ k ; . . . k  M+ . . . + k ~ . . . k  h ~ (34) 

M -  I r ~ ( (~ in -- st st 
P.  )(Sj,-- P, ) (35) 

G ; . = -  E E Z~ p~t +pst  
r= l  l=1 n = l  kr r 

The average velocity v is obtained from Eq. (7), 

?v/ 
V = E ([+ -- [/- ) p~t (36) 

i=1 

and the effective diffusion coefficient D from Eq. (8), 

P i ({ ) in - -  p ~ t )  D = ~ (l + + l ?  ) e~t + E + st E ( l ?  -- I i ) st 
i=1 r= l  kr  P r  i=1 n = l  

(37) 

In the particular case of two layers with l~-= I~ = li and l i -=  l + = 12, 
Eqs. (36) and (37) reduce to the following simple results (k~-=kl and 
k 2 = k 2 ) :  

( k l  - -  k 2 ) ( 1 2  - -/i ) 
v - (38) 

kl  + k 2  

D = ll -[- 12 (ll  -- 12)2 
2 + 4kl k2 (k-~l~ ~2)3 (39) 

The results given in Eqs. (36) and (37) are the generalizations to the 
case of a discrete system of those given in refs. 20 and 21. The latter results 
are recovered by taking the following continuum limit introducing the 
parameter a, the width of the unit cell): 

f 
a - - ~  0 

with fixed (40) f 
x = / a  

2 (/? +/?) D 
a 2 = i 

a(/? - - / ? )  = V, 

One thus finds 
M 

v =  ~ v,P~ t 
i = l  

M - ,  ( Z ; :  1 ( ~ , -  ~) p~t)2 
D =  ~ DiP~ t +  ~, + ~t 

i=1 r= l  kr P~ 

(41) 

(42) 



1230 Claes and Van den Broeck 

4. CONCLUSION 

We have shown that the calculation of the effective diffusion coefficient 
for the dispersion of particles in spatially periodic systems can be reduced 
to the calculation of the Green's function for the random walk in the 
periodically repeated unit cell. In the case of small unit cells, the Green's 
function can be calculated explicitly (possibly with the use of symbolic 
manipulators like Macsyma). In other cases, such as a random walk in a 
one-dimensional unit cell with general transition rates, the small-s expan- 
sion of the Green's function is known analytically. In all these models, the 
interplay between convection and molecular diffusion leads to a modifica- 
tion of the transport properties that can be calculated analytically. Using 
this formalism, we have discussed several models that display or illustrate 
phenomena likely to occur in more realistic systems. 
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